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This paper is concerned with laminated plates mounted on a rotating disk under
accelerating conditions. Interfacial friction is included at speci"ed locations on the
plate. The e!ects of in-plane loads and non-linear Coriolis forces are included. An
eight noded isoparametric element is derived for the analysis. Under the action of
combined accelerating conditions and Coriolis forces, it is shown that the blade is
subjected to shock forces. Employing the Newmark direct integration method, the
results obtained are presented.
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1. INTRODUCTION

Gas turbine and compressor blades are most #exible elements and susceptible to
fatigue failures. They are subjected to nozzle passing excitation and go through
several critical speeds before reaching the operating speed. To limit the resonant
response at these criticals under transient conditions, a good damping design is
practised through interfacial slipping surfaces. The blades themselves can be treated
as beams or plates depending on the blade aspect ratio and laminated plates o!er
light weight and high strength for the blading.

The application of plate theory to blade vibration problems has been considered
by several authors which include Petricone and Sisto [1], Dokainish and Rawtani
[2], MacBain [3], Gupta and Rao [4] amongst others. The steady state response
and stability of rotating laminated plates is studied by Shiau et al. [5].

Damping studies form an important aspect of blade vibration studies, since it
plays an important role in limiting the resonant vibrations. These models can be
broadly divided into two major categories: (1) macro slip models, e.g., Sinha and
Gri$n [6] and (2) micro slip models, e.g., Menq et al. [7]. A non-linear damping
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model was proposed by Rao et al. [8] based on experiments and was utilized in
determining response of blades under transient conditions but without taking into
account the Coriolis forces [9]. There are "nite element packages which have
friction elements and transient analysis capabilities, e.g., ANSYS [10] but which
cannot handle the e!ect of Coriolis accelerations.

The equations of motion of beam-type blades taking into account of accelerating
conditions as well as Coriolis forces were derived by Vyas and Rao [11], which
were later solved by them in reference [12]. A signi"cant aspect of this work is the
development of shock forces which increase the response under high accelerating
conditions. Here, the work of Shiau et al. [5] of rotating laminated plates is
extended to account for the Coriolis forces in the presence of accelerating
conditions and under the in#uence of interfacial friction.

2. EQUATIONS OF MOTION

We "rst set up the kinetic energy expression of a rotating laminated plate shown
in Figure 1.

2.1. KINETIC ENERGY

The position vector of a typical point P on the blade after deformation can be
expressed as
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Figure 1. Con"guration of the composite laminate blade.
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Then, the velocity of point P is
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The kinetic energy of the composite plate is then given by
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2.2. POTENTIAL ENERGY

The total potential energy of the plate can be shown to be
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where [p0] are initial stresses of the blade due to the e!ect of the centrifugal force of
the rotating plate. For the laminated plate, the stress}strain relationship is

MpN"[QM ] MeN , (8)

where [QM ] is the reduced sti!ness matrix [13] and the strain energy due to bending
is
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2.3. FINITE ELEMENT

An eight-noded isoparametric element is adopted. The co-ordinate systems and
con"guration of the element can be taken from Yang [14]:
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which in matrix from is
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Mindlin's plate theory is adopted and the displacement components are
expressed as
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which in matrix form are
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is the nodal displacement vector. Now, the strain displacement relations are written
as
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where [N
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4
] can be taken from Shiau et al. [5]. Making use of the Jacobian

matrix to get the partial derivatives with respect to local co-ordinates and the
Lagrangian approach, the equations of motion for the element can be obtained as
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The initial displacement vector Mq
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N due to centrifugal force "eld is obtained from
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N and the corresponding initial stress vector for pre-vibration
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condition is determined from Mp0N"[QM ][N
2
]Mq

c
N. Then, with the help of the

in-plane potential energy in equation (7) and Lagrangian approach, the geometric
sti!ness matrix is obtained as
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Equation (14) now becomes
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After assembling the elemental equations, we get
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The generalized force vector MF
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consists of nozzle passing harmonic force and the non-linear dry friction force. The
nozzle passing force is
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The non-linear dry friction force is accounted by assuming that there is macro
slip (see Figures 2 and 3). The component f i
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at the ith node of the vector MF
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3. NUMERICAL EXAMPLE

The solution of equations (17) is obtained by using the Newmark method.
A [0/$45/90]

4:.
composite mid-plane symmetric laminate blade with a"

0)1524 m, b"0)0381 m, t"0)000528 m mounted on a 0)381 m radius disk is
considered. The blade aspect ratio is 4. The material properties of graphite are:
Young's modulii 128 and 11 GPa, shear modulii 4)48, 4)48 and 1)53 GPa, the
Poisson ratio 0)25, thickness 0)00013 m and the density 1500 kg/m3. The sti!ness of
the friction damper in the direction of relative motion is taken as 3500 N/m. The
blade is discretized into four elements as shown in Figure 4.

The response of the blade tip center with zero initial speed and constant angular
acceleration 16 000 r.p.m./min, setting angle 903, with a non-linear dry friction force



Figure 2. Model of frictional damping system.

Figure 3. Loop friction force versus response.
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kR/f
0
"0)02 applied at node 19 is shown in Figure 5. The frequency of the response

is 230 cps corresponding to the "rst natural frequency of the blade. Because of
acceleration, the blade experiences a sudden shock and the resulting peak-to-peak



Figure 4. Four element mesh of the blade.

Figure 5. Response at a
0
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vibration of 18 lm decays in the presence of the friction damping. The pseudo-
static response is about 9 lm. When the acceleration is decreased to 3200 r.p.m./min,
the response also decreases to nearly 3)5 lm peak to peak settling down to
a pseudo-static response of 1)8 lm as shown in Figure 6.
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We can consider here a simple case of a spring}mass system with a natural
frequency u

0
"230 cps (1445)13 rad/s) subjected to a sudden base acceleration

a
0
"16 000 r.p.m/min (27)925 rad/s/s). The peak-to-peak response of the mass is

then 2a
0
/u2

0
"26)74 lm. In the rotating plate example with a non-linear dry

friction force above the peak-to-peak response is 18 lm, a value that is comparable
to the undamped single-degree-of-freedom system. At 3200 r.p.m./min acceleration,
the peak-to-peak response of the single-degree-of-freedom system is a "fth of
26)74 lm"5)348 lm. For the plate example, the response at 3200 r.p.m./min is
3)5 lm which is 5)1 times less than the response at 16 000 r.p.m./min.

Next, a nozzle passing harmonic distributed force is applied over the entire blade
with a transverse force"10 cosX

p
t N/m2 and chordwise force"10 cosX

p
t N/m2.

Figure 7 shows the transient and forced vibration response for X
0d

/u
n1
"0)5,

X
p
/u

n1
"1)0 and a

0
"16 000 r.p.m/min. To begin with, the blade is assumed to run

at a constant speed, and is accelerated at 0)2 s for a period of 0)5 s. As soon as the
blade begins to rotate, a transient is developed which decays in the presence of
friction and settles to a steady state forced vibration amplitude of 2)2 lm in about
0)1 s. When the blade is accelerated at 0)2 s it experiences a shock and the mean
equilibrium shifts to a new level with a substantially large dynamic displacement.
The transient vibration dies out in about 0)1 s again and settles to the steady state
value. However, there is a residual mean de#ection of nearly 7 lm.

In Figure 8, the response of the blade for a lower value of acceleration
a
0
"3200 r.p.m/min is given. One can see a similar behavior as in Figure 7. The

pseudo-static de#ection, however, is about 1)4 lm only.
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Next the e!ect of accelerating and decelerating the blade is shown in Figure 9 by
a
0
"$16 000 r.p.m./min. After an initial constant running speed operation for

0)2 s, the blade is accelerated; then at 0)4 s the acceleration is cut o!. It is then
decelerated, at 0)6 s, and the deceleration is cut o! at 0)8 s. Each time the blade is
subjected to an acceleration, there is a change in the pseudo-static de#ection and
that the transient dies out in less than 0)1 s.

Figure 10 shows the response with the blade setting angle equal to zero, "rst with
a
0
"0 for 0)2 s and then with a

0
"16 000 r.p.m./min for 0)3 s. We "nd that there is

practically no pseudo-static response, since the second moment of area is very large
in the "xed frame Z-axis direction as shown in Figure 1.

4. CONCLUSIONS

A "nite element analysis for rotating laminated plates under accelerating and
decelerating conditions including Coriolis forces is proposed. The equations of
motion are solved by the direct integration method. It is shown that the blades are
subjected to a shock force and that pseudo-static de#ections larger than the
dynamic response can occur while crossing resonance.
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APPENDIX: NOMENCLATURE

[A] angular velocity matrix
MdN displacement vector
F
1
, F

2
, F

3
nozzle passing force components

F
NPF

nozzle passing force vector
MF

g
N external force vector

M f
a
N pseudo-static tangential force vector

M f
c
N centrifugal force vector

f
ndf

non-linear dry friction force
[G] gyroscopic matrix
K

G
damper sti!ness

[K] sti!ness matrix
[K

a
] acceleration sti!ness matrix

[K
e
] elastic sti!ness matrix

[K
g
] rotary sti!ness matrix

[K
r
] geometric sti!ness matrix

[M] mass matrix
[N

i
] shape function and related matrices, see Shiau et al. [5]

[QM ] reduced sti!ness matrix
MqN nodal displacement vector
Mq

c
N initial displacement vector

R normal preload
t time
¹ kinetic energy
; potential energy
u, v, w displacements
v velocity vector
MxN N co-ordinates vector
x (l)
n

nodal co-ordinates vector
x, y, z rotating co-ordinates
z
i

displacement of friction damper
a angular acceleration vector
a
x
, a

y
, a

z
acceleration components

MdN global displacement vector
e
x
2 strain components

MeN strain vector
Me

g
N gradient vector

k coe$cient of friction
. density
p
x
2 stress components

MpN stress vector
[p0] initial stresses
/ shape functions, see reference [14]
u setting angle
t
x
, t

y
slopes

X
0

initial angular velocity
X

p
nozzle passing excitation frequency
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X
0d

angular velocity of disk
X

0x
2 angular velocity components

denotes di!erentiation with time
,x
Y

denotes di!erentiation with respect to x...
denotes elemental matrices
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